LITTLE CHRONOLOGY
In the early days of the electrical industry, the most widespread and popular use of electricity was for electric lighting. The mechanical engineer Emil Montz Rathenau had got to know Edison’s system of illumination during a visit to the first International Electricity Exhibition in Paris in 1881. In 1882 he spread the message in Germany that electricity could “soon provide light and power on demand – and operate lights in homes and machines in factories at the same time.”

Almost 130 years ago in Berlin, on 19th April 1883, Rathenau founded the predecessor of what later became the “Allgemeine Elektrizitäts-Gesellschaft” (General Electricity Company) under the name “Deutsche Edison-Gesellschaft für angewandte Elektrizität” (German Edison Company for Applied Electricity, DEG) to promote the commercial use of the German rights to Edison’s patent incandescent light, which Rathenau had acquired. In 1887, DEG was renamed “Allgemeine Elektrizitäts-Gesellschaft” (AEG).

AEG significantly contributed to electrification in Germany and abroad and quickly rose to become the largest German electrical company with a world-wide reputation.

The AEG concern is now history, but the brand lives on. The slogan “aus Erfahrung gut – AEG” (Good from experience – AEG) is a testimony to quality from Germany. The Berlin company, “AEG Industrial Engineering GmbH” is committed to the quality and tradition of the historical AEG group. “In publishing this little chronology” says Heinrich Otterpohl, founder and manager of AEG IE and a member of the Walther Rathenau foundation, “we want to acknowledge the industrial legend that is AEG, but above all we want to acknowledge the people who are inseparably connected with the name ‘AEG’.”
19th April, 1883 | “Deutsche Edison-Gesellschaft für angewandte Elektrizität” (DEG) founded.

8th May, 1884 | DEG establishes its first subsidiary, the “Städtische Elektricitäts-Werke AG zu Berlin” (A.G.StEW) with a share capital of 3 million Marks.

12th August, 1884 | The A.G.StEW enters into a concession contract with the city of Berlin, thus assuming the task of supplying Berlin’s electricity.

13th September, 1884 | Commissioning of the first DEG block power station in a basement at the corner of Unter den Linden and Friedrichstraße 85, with an output of 100 kW DC and a voltage of 100 V. It supplies Café Bauer and the neighbouring shops and restaurants.

15th August, 1885 | The first public power station in Germany starts operation. Built by DEG at Markgrafenstrasse 44, it houses six steam engines each producing a good 100 kW (150 horsepower). Barely a year later, a second central power station of comparable size is set up in Mauerstrasse. Its customers are the Königliche Schauspielhaus and the Reichsbank. 1887 sees the first link between two networks fed from these individual power stations.

1885 | DEG is the first German industrial company to begin building a network of branches both at home and abroad (First German branch in Munich in 1885, first foreign branch established in Madrid in 1889.)
23rd May, 1887 | DEG is restructured and becomes AEG (Allgemeine Elektrizitätsgesellschaft).

October 1887 | AEG assumes the administration of the company A.G. SteW and establishes the "Berliner Elektrizitäts-Werke" (BEW). The directors are Emil Rathenau, Oskar von Miller and Felix Deutsch (1884–1964). In the same year, the production of steam engines, dynamo generators, electric motors, vehicles, lifting equipment, pumps, fans and installation material begins in the machine works in Ackerstrasse in Berlin.

1888 | AEG enters into the business of building electric railways. 1889 sees the establishment of a railways section and the delivery of the first mining locomotives.

1889/90 | The long-standing chief designer at AEG, Michail von Dolivo-Dobrowolsky (1862–1919), the "father of three-phase AC technology" invents both the squirrel-cage rotor asynchronous motor in 1889 and the three-phase "cage rotor" transformer in 1890. His inventions provide practical applications for three-phase AC power. After the first single cage motor he later also builds his first double cage version. Today, the asynchronous motor is the most widely used electric motor.

1891 | The first of its kind in Europe: AEG sets up a complete electrical tram network and system in Halle an der Saale. By mid-1896 there are already 34 tram systems in operation or under construction. By 1905 the number has risen to 70 tram systems 1475 km of tramlines and 2700 motorised tram carriages.

25th August, 1891 | At the International Electrotechnical Exhibition in Frankfurt, Main the first long-distance transmission of electrical energy is made over a distance of 176 km between Lauffen am Neckar and Frankfurt, Main using AEG plant equipment with high-voltage three-phase current at 20,000 V. This exhibition in Frankfurt proves that electricity can be transmitted over great distances with low line losses and that the development of power stations for whole regions is possible. Alternating current systems are better than direct current systems. This exhibition stimulates the public and private demand for the new energy – electricity.

1892 | The company starts producing its own household appliances.

1895 | AEG builds Germany’s first, three-phase power station, Kraftwerk Oberspree. Industrial firms are its main customers.

1899 | Moabit power station is commissioned, delivering electricity at 6 kV and is thus able to supply a wider area. After the contracts with Siemens ended in 1894, power station business is made an independent division under the leadership of Walther Rathenau (1867–1922).

Around 1900 | At the turn of the century AEG has 140 branch offices and subsidiaries world-wide and numerous factories in and around Berlin. Erich Rathenau (1871–1903) and Walther Rathenau join AEG’s Board of Directors. In May 1902 Walther Rathenau steps down from the Board of Directors and becomes the owner of the affiliated company Berliner Handels-Gesellschaft (BHG) until 1907. From 1904 he is on the Supervisory Board of AEG and becomes its chairman in 1912.

1901 | The "Neue Automobil-Gesellschaft m.b.H." is founded (NAG, renamed "Nationale Automobil-Gesellschaft" from 1915).

27th May, 1903 | AEG and Siemens & Halske, acting on the instructions of Kaiser Wilhelm II., form a company called "Gesellschaft für drahtlose Telegraphie m.b.H." (Wireless Telegraphy Company, Telefunken). The Kaiser wants to avoid the Army and Navy using different radio systems.

In April 1923, the company is renamed "Telefunken Gesellschaft für drahtlose Telegraphie m.b.H.", which was the company name until 1955.

27th October, 1903 | An AEG three-phase high-speed railway achieves a new world record speed of 210.2 km/h on the Royal Prussian Military Railway between Marienfeld and Zossen – in direct competition with Siemens & Halske. In 1911, the first electrified long distance railway in Germany comes into operation between Bitterfeld and Dessau.
AEG recruits one of the most avant-garde artists of the time, the painter, typographer, graphic artist and architect Peter Behrens (1868 – 1940) as an artistic consultant. Behrens’ artistic development predestines him to a congenial collaboration with industry and to develop and implement a completely new novel design philosophy. His primary goal is to improve craft products which are mass produced, and this meets a widespread need.

After initial graphical assignments, in 1907 AEG entrusts him with the first product design tasks for an area which is the most widespread and popular use of electricity at the time – electric lighting. Behrens is asked to “design artistic forms for carbon arc lamps and all accessory items.” In redesigning the housings for arc lamps, AEG and Behrens are pursuing a concept which is revolutionary for its time. Form must no longer copy any historical style, any craftsmanship skills or any other materials (other than those actually used). It must no longer deny the industrial production processes, rather it must emphasise them – and the mechanical production methods must be carried out exactly. AEG has taken the step of “harmonising arc lamps with the artistic demands of modernism.” Peter Behrens is seen as the prototype industrial designer.

His designs for arc lamps using a revolutionary repertoire of form based on the reduced geometrical shapes of the triangle, square and circle, and they set the scene for a whole new culture of design: industrial art or industrial design.

In 1907 he designs the world’s first ever industrial product – the Economy Arc Lamp. In the course of time it becomes an icon of industrial design.

From 1908 Behrens designs other arc lamp types and products such as small electrical household appliances (e.g. tea urns, kettles, fans, and heating stoves) small motors, clocks, control panels etc. His products range from small appliances to large turbines, and they all bear a uniform design style.

Peter Behrens is not only regarded as the pioneer of Modernism and the first “industrial designer” (Julius Posener), but also the inventor of Corporate Identity. As part of his Corporate Identity Concept – which includes a company font, graphic designs, product design and even industrial architecture – the entire outward presentation style of a major industrial company is consistently defined and standardised for the first time.

Before the First World War, AEG is the biggest German company in the electrical industry, much bigger than Siemens.

First major contract to supply electrical long-distance railway locomotives.

Delivery of the first electrical locomotives.

Emil Rathenau dies at the age of 76. His son Walther becomes the President of AEG. He concentrates on armaments manufacture and thus compensates for the decline in foreign markets at the start of the First World War.

The historical turbine factory on the corner of Huttenstraße and Berlichingenstraße, Berlin 1909
1919 | Founding of the “Osram Werke GmbH KG” by AEG, Siemens & Halske and the company “Deutsche Gasglühlicht AG (Auer-Gesellschaft)”.

1921 | Walther Rathenau becomes Reich Minister for Reconstruction in the Weimar Republic.

31st January, 1922 | Walther Rathenau is appointed Reich Foreign Minister. On 16th April, 1922 he concludes the international Treaty of Rapallo with the Russian Soviet Federative Socialist Republic, later to be a founding member of the Soviet Union.

The resumption of diplomatic and economic relations is extremely important for Germany (and for AEG) because its products have been boycotted by former wartime opponents in the West. Russia becomes AEG’s biggest trading partner.

24th June, 1922 | Walther Rathenau is shot dead by two young officers belonging to the extreme right-wing “Organisation Consul” (OC).

29th October, 1923 | The first German radio station starts operating in Berlin’s Vox-Haus using Telefunken equipment.

1924 | AAEG’s turnover passes 500 million Reichsmark. Telefunken starts to develop television.

1928 | The company exhibits television sets for the first time at the 5th Great German Radio Exhibition in Berlin.

1930 | AEG typewriters are also given the brand name “Olympia”. In 1931 the first Olympia typewriter is produced.

1935 | The Borsig Locomotive Factory is taken over and the construction of locomotives is moved to Hennigsdorf. The world’s first tape recorder, the Magnetophon K1 is presented at the Great German Radio Exhibition in Berlin.

1936 | Telefunken develops the first electronic television camera (Ikonoskop), which was nicknamed the “Olympic canon”, for the 1936 summer Olympic Games in Berlin.

1938 | AEG builds the first high-performance locomotive.

1941 | AEG buys the Telefunken shares held by Siemens & Halske and carries on the company as a wholly-owned subsidiary.

1928 | The company exhibits television sets for the first time at the 5th Great German Radio Exhibition in Berlin.

1930 | AEG typewriters are also given the brand name “Olympia”. In 1931 the first Olympia typewriter is produced.

1935 | The Borsig Locomotive Factory is taken over and the construction of locomotives is moved to Hennigsdorf. The world’s first tape recorder, the Magnetophon K1 is presented at the Great German Radio Exhibition in Berlin.

1936 | Telefunken develops the first electronic television camera (Ikonoskop), which was nicknamed the “Olympic canon”, for the 1936 summer Olympic Games in Berlin.

1938 | AEG builds the first high-performance locomotive.

1941 | AEG buys the Telefunken shares held by Siemens & Halske and carries on the company as a wholly-owned subsidiary.

1930 | AEG typewriters are also given the brand name “Olympia”. In 1931 the first Olympia typewriter is produced.

1935 | The Borsig Locomotive Factory is taken over and the construction of locomotives is moved to Hennigsdorf. The world’s first tape recorder, the Magnetophon K1 is presented at the Great German Radio Exhibition in Berlin.

1936 | Telefunken develops the first electronic television camera (Ikonoskop), which was nicknamed the “Olympic canon”, for the 1936 summer Olympic Games in Berlin.

1938 | AEG builds the first high-performance locomotive.

1941 | AEG buys the Telefunken shares held by Siemens & Halske and carries on the company as a wholly-owned subsidiary.
1st January, 1967 | Merger with Telefunken to form “Allgemeine Elektricitäts-Gesellschaft AEG-Telefunken” with its company headquarters in Frankfurt, Main.

25th August, 1967 | With a symbolic push of a button at the 25th Great German Radio Exhibition, Willy Brandt initiates the PAL system for television in the Federal Republic of Germany and West Berlin.

1968 | The company “Kraftwerk-Union” (Power Station Union, KWU) is founded by AEG and Siemens (each with a share of 50%).

1970 | Following the merger with Telefunken, AEG ranks as the 12th largest electronics company in the world, with 178,000 employees.

1972 | The largest diesel generator built in the world to date (39,100 kVA, 430 metric tonnes, height 10 m, construction time approx. 19 months) is demonstrated publicly in the test field of the AEG-Telefunken heavy engineering factory in Berlin. The client is Ghent municipal utilities, Belgium.

1974 | Berlin Tegel Airport is opened. AEG is largely responsible for the energy supply (emergency diesel power generator) and the design and fitting of the electronic systems. Berlin Tegel Airport will close on the evening before the new Berlin Brandenburg Airport (BER) is opened.

1977 | AEG uses high voltage direct current (HVDC) for transmission over long distances, for example over 2000 km from East Africa (Zambezi rapids hydro-power plant) to South Africa, at 2000 MW, ±533 kV. To achieve this, 46,000 thyristors are installed.

1945 | Siemens learns of the Allied plans to divide Germany up after a victory as early as 1944, and therefore moves many production centres to the West. But in 1945 AEG loses almost all of its production sites. However, after World War II, AEG quickly succeeds in rebuilding its operations in West Germany with new, modern factories.

1950 | Production of cooling appliances starts.

1951 | The Group headquarters are moved to Frankfurt, Main, but AEG keeps its pro-forma headquarters in Berlin.

1956 | Constantin Boden (1893–1970) becomes the Chairman of the Management Board. The first German transistor radio receiver is made.

1958 | Construction of the first, German “Experimental Nuclear Power Station” at Kahl am Rhein. Orders for boiling-water reactors in Lingen, Gundremmingen and Würgassen follow. The slogan “AEG – aus Erfahrung gut” (AEG – Good from experience) is used for the first time for AEG household appliances. The fully automatic washing machine “Lavamat” is launched.

1959 | The largest digital computer of its time to be developed in Europe, the TR 4 (TR = Telefunken-Rechner) is installed in the computing centre at the Bavarian Academy of Sciences (Bayerische Akademie der Wissenschaften). 23 systems are installed by the middle of 1967, 19 of them in Germany.

1960 | The administration offices of “Telefunken GmbH” move into the new high-rise office block Ernst-Reuter-Platz in West-Berlin.

3rd January, 1963 | The PAL colour television format (Phase-Alternating-Line), developed at Telefunken by Walter Bruch (1906–1990), is demonstrated for the first time to experts of the European Broadcasting Union.

1974 | Berlin Tegel Airport is opened. AEG is largely responsible for the energy supply (emergency diesel power generator) and the design and fitting of the electronic systems. Berlin Tegel Airport will close on the evening before the new Berlin Brandenburg Airport (BER) is opened.
AEG gas turbines, Karlsruhe

Cross section of a gas turbine

AEG gas turbines, Kanis

turbines and all the pumping stations.

For the construction of the Urengoy-
Pomary-Uzhgorod pipeline (Trans-
Siberian Pipeline), AEG delivers 57 gas

and all the pumping stations.

1985 | Takeover by “Daimler-Benz
Aktiengesellschaft” (in 1986 Daimler-Benz
acquires a majority shareholding in AEG).

1987 | The lights never go out in
West Berlin – AEG builds a heavy-duty
20 MW, battery storage plant for Steglitz
power station that is both technically
and economically effective. It stores
electrical energy and bridges power
station outages with instantaneous
release of energy at any given time.

1994 | AEG Hausgeräte GmbH (household appliances) with its main
factory in Nuremberg is sold to the
Swedish company Electrolux AG.

1994–1998 | AEG receives the
contract for the first rail transit system
for the capital of Malaysia, Kuala Lumpur
– a complete urban railway system
with a length of 27 km. AEG supplies
the entire electro-mechanical part of
the system: 30 six-car trains designed
especially for the tropics, ATS signal

Phase I becomes operational after a
three-year construction period and
Phase II after two further years, in time
for the 1998 Commonwealth Games
in Malaysia.

1996 | At the beginning of June the
Annual General Meeting of Daimler-Benz
AG decides on the possible dissolution
of the AEG Group. After 113 years,
the AEG company is transferred to the
Daimler-Benz subsidiary EHG (Elektro-
holding GmbH), Frankfurt, Main by way
of a merger with Daimler Benz AG, as
it was at the time, and the transfer of
AEG's remaining assets. This company
then sells the global AEG brand rights
for numerous product groups to

AEG Hauserste GemH

1997 | The extensive company
archive and a museum created by AEG
itself are transferred from Frankfurt to the
German Museum of Technology Berlin
(Deutsches Technikmuseum Berlin).
The 25 lorry loads contain 5200 books,
4000 metres of files, enough picture
material for 350 metres of shelves,
1300 films and over 1000 other items,
including a 21 tonne steam turbine.

1994 | AEG IE's field of work includes
the delivery of all parts.

AEG IE is the new AEG is
established “AEG Industrial Engineering
GmbH” with its headquarters at the
traditional location of the AEG industrial
plants on Hohenzollernstrasse in Berlin.

The company sees itself as a competent
point of contact and communication
centre for former AEG customers
throughout the world and the legitimate
successor to the industrial activities of
AEG. AEG IE's field of work includes
the planning and delivery of replacement
parts, the maintenance and modern-
icisation of customer equipment, the
development of energy concepts and
the delivery of all parts.

AEG IE preserves the industrial heritage
of AEG and continues its ongoing
development and modernisation.

Plant and equipment installed and
supplied by AEG are maintained
or modernised by AEG IE, for example
the rail transit system in Kuala Lumpur
– the capital of Malaysia – and the
Metro in Madrid, Spain. There may
also be extensive planning work to be
undertaken, as is the case with the
modernisation of the Russian-Ukrainian
“Sojus” pipeline.

AEG IE is a reliable partner for tasks
such as heavy haulage contracts for
furnace transformers or replacing the
engine systems in a research vessel,
proving that it is a competent and
worthy successor to the industrial
activities of AEG – for both national and
international clients.

The longest serving steam turbine
in the world was set up by AEG in 1931
in the Samara power station in Russia.
It ran for a total of 378,700 hours,
and during this time the rotor turned
68 billion times. The Russian energy
group Wolga-TGK entrusted the turbine
to AEG IE, which arranged the trans-
port to the Technical Museum of
Berlin.

Nothing describes the impressive
quality of AEG industrial products more
beautifully than the following quote
from a letter of thanks received from
Mooring Hydro Pty Ltd in Tasmania.

“Please allow me to congratulate you
and everyone at AEG in Germany
on the success of the 1000 year-old AEG
power station, together with their serial numbers,
and providing further details of to its
area of operation, the letter closes
with the following sentence:

“We take care of your Power Quality” is our philosophy.

Trendsetting projects – such as the
concept development for decentralised
new energy technologies from
renewable, quickly regenerating raw
materials in cooperation with the
Energy Research Integration Centre
CENERG at the Institute of Power
Engineering in Warsaw – characterise
the business operations of AEG IE
just as much as our sense of respon-
sibility for the history of AEG and the
preservation of this heritage.

AEG Industrial Engineering is a
member of the Energy Efficiency Export
Initiative of the Federal Ministry for
Economics and Technology (BMWi),
the German Association for Small
and Medium-sized Businesses and in
German-African Business Association,
and it serves as a member of the
Committee on Eastern European
Economic Relations of the Federation
of German Industry.

“The fact that this plant is still operating
today is testimony to the engineering
efficiency incorporated in its design
and execution!”

We are fully committed to main-
taining this level of quality in our new
products, too. “We take care of your
Power Quality” is our philosophy.

1997–2003 | The new AEG is
established “AEG Industrial Engineering
GmbH” with its headquarters at the
traditional location of the AEG industrial
plants on Hohenzollernstrasse in Berlin.

The company sees itself as a competent
point of contact and communication
centre for former AEG customers
throughout the world and the legitimate
successor to the industrial activities of
AEG. AEG IE's field of work includes
the planning and delivery of replacement
parts, the maintenance and modern-
icisation of customer equipment, the
development of energy concepts and
the delivery of all parts.

AEG IE preserves the industrial heritage
of AEG and continues its ongoing
development and modernisation.

Plant and equipment installed and
supplied by AEG are maintained
or modernised by AEG IE, for example
the rail transit system in Kuala Lumpur
– the capital of Malaysia – and the
Metro in Madrid, Spain. There may
also be extensive planning work to be
undertaken, as is the case with the
modernisation of the Russian-Ukrainian
“Sojus” pipeline.

AEG IE is a reliable partner for tasks
such as heavy haulage contracts for
furnace transformers or replacing the
engine systems in a research vessel,
proving that it is a competent and
worthy successor to the industrial
activities of AEG – for both national and
international clients.

The longest serving steam turbine
in the world was set up by AEG in 1931
in the Samara power station in Russia.
It ran for a total of 378,700 hours,
and during this time the rotor turned
68 billion times. The Russian energy
group Wolga-TGK entrusted the turbine
to AEG IE, which arranged the trans-
port to the Technical Museum of
Berlin.

Nothing describes the impressive
quality of AEG industrial products more
beautifully than the following quote
from a letter of thanks received from
Mooring Hydro Pty Ltd in Tasmania.

“Please allow me to congratulate you
and everyone at AEG in Germany
on the success of the 1000 year-old AEG
power station, together with their serial numbers,
and providing further details of to its
area of operation, the letter closes
with the following sentence:

“We take care of your Power Quality” is our philosophy.

Trendsetting projects – such as the
concept development for decentralised
new energy technologies from
renewable, quickly regenerating raw
materials in cooperation with the
Energy Research Integration Centre
CENERG at the Institute of Power
Engineering in Warsaw – characterise
the business operations of AEG IE
just as much as our sense of respon-
sibility for the history of AEG and the
preservation of this heritage.

AEG Industrial Engineering is a
member of the Energy Efficiency Export
Initiative of the Federal Ministry for
Economics and Technology (BMWi),
the German Association for Small
and Medium-sized Businesses and in
German-African Business Association,
and it serves as a member of the
Committee on Eastern European
Economic Relations of the Federation
of German Industry.

“The fact that this plant is still operating
today is testimony to the engineering
efficiency incorporated in its design
and execution!”

We are fully committed to main-
taining this level of quality in our new
products, too. “We take care of your
Power Quality” is our philosophy.

1997–2003 | The new AEG is
established “AEG Industrial Engineering
GmbH” with its headquarters at the
traditional location of the AEG industrial
plants on Hohenzollernstrasse in Berlin.

The company sees itself as a competent
point of contact and communication
centre for former AEG customers
throughout the world and the legitimate
successor to the industrial activities of
AEG. AEG IE's field of work includes
the planning and delivery of replacement
parts, the maintenance and modern-
icisation of customer equipment, the
development of energy concepts and
the delivery of all parts.

AEG IE preserves the industrial heritage
of AEG and continues its ongoing
development and modernisation.

Plant and equipment installed and
supplied by AEG are maintained
or modernised by AEG IE, for example
the rail transit system in Kuala Lumpur
– the capital of Malaysia – and the
Metro in Madrid, Spain. There may
also be extensive planning work to be
undertaken, as is the case with the
modernisation of the Russian-Ukrainian
“Sojus” pipeline.

AEG IE is a reliable partner for tasks
such as heavy haulage contracts for
furnace transformers or replacing the
engine systems in a research vessel,
proving that it is a competent and
worthy successor to the industrial
activities of AEG – for both national and
international clients.

The longest serving steam turbine
in the world was set up by AEG in 1931
in the Samara power station in Russia.
It ran for a total of 378,700 hours,
and during this time the rotor turned
68 billion times. The Russian energy
group Wolga-TGK entrusted the turbine
to AEG IE, which arranged the trans-
port to the Technical Museum of
Berlin.

Nothing describes the impressive
quality of AEG industrial products more
beautifully than the following quote
from a letter of thanks received from
Mooring Hydro Pty Ltd in Tasmania.

“Please allow me to congratulate you
and everyone at AEG in Germany
on the success of the 1000 year-old AEG
power station, together with their serial numbers,
and providing further details of to its
area of operation, the letter closes
with the following sentence:

“We take care of your Power Quality” is our philosophy.
We would like to thank Dr. Sabine Röck, the German Museum of Technology Foundation Berlin (Stiftung Deutsches Technikmuseum Berlin) and the Energie-Museum Berlin e. V for their kind support. We would also like to express our gratitude to AB Electrolux, Sweden for their kind cooperation.